Morita duality and finitely group-graded rings
نویسندگان
چکیده
منابع مشابه
Group - Graded Rings and Duality
We give an alternative construction of the duality between finite group actions and group gradings on rings which was shown by Cohen and Montgomery in [1]. This duality is then used to extend known results on skew group rings to corresponding results for large classes of group-graded rings. Finally we modify the construction slightly to handle infinite groups. Introduction. In the first section...
متن کاملPeriodic rings with finitely generated underlying group
We study periodic rings that are finitely generated as groups. We prove several structure results. We classify periodic rings that are free of rank at most 2, and also periodic rings R such that R is finitely generated as a group and R/t(R) Z. In this way, we construct new classes of periodic rings. We also ask a question concerning the connection to periodic rings that are finitely generated a...
متن کاملMorita Duality and Large - N Limits
We study some dynamical aspects of gauge theories on noncommutative tori. We show that Morita duality, combined with the hypothesis of analyticity as a function of the non-commutativity parameter Θ, gives information about singular large-N limits of ordinary U (N) gauge theories, where the large-rank limit is correlated with the shrinking of a two-torus to zero size. We study some non-perturbat...
متن کاملGraded Rings and Modules
1 Definitions Definition 1. A graded ring is a ring S together with a set of subgroups Sd, d ≥ 0 such that S = ⊕ d≥0 Sd as an abelian group, and st ∈ Sd+e for all s ∈ Sd, t ∈ Se. One can prove that 1 ∈ S0 and if S is a domain then any unit of S also belongs to S0. A homogenous ideal of S is an ideal a with the property that for any f ∈ a we also have fd ∈ a for all d ≥ 0. A morphism of graded r...
متن کاملOn the Jacobson radical of strongly group graded rings
For any non-torsion group G with identity e, we construct a strongly G-graded ring R such that the Jacobson radical J(Re) is locally nilpotent, but J(R) is not locally nilpotent. This answers a question posed by Puczy lowski.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1995
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700014593